Design of Dual Release Drug Delivery System of Roxithromycin and Ambroxol HCl.

B. P. Patel*, D. M. Patel

1PhD scholar, School of Pharmacy, RK University, Rajkot, India and Asst Professor, Nootan Pharmacy College, Visnagar, Gujarat, India,
2Professor and Head, Dept of pharmaceutics, Arihant School of Pharmacy & Bio-Research Institute, Sarkhej-Gandhinagar highway, Gandhinagar, Gujarat, India

Received 27 September 2016; received in revised form 23 November 2016; accepted 23 November 2016
*Corresponding author E-mail address: visitbipin111@yahoo.co.in

ABSTRACT

Upper respiratory tract infections are the illnesses caused by an acute infection which involves the upper respiratory tract: nose, sinuses, pharynx or larynx. Roxithromycin (macrolide antibiotic) and ambroxol HCl (mucolytic) are use for this treatment. The dual release system of roxythromycin and ambroxol HCl was successfully prepared by bi-layer tablet approach for management of URTI. Quick release of roxithromycin was achieved by using disintegrants and slow release of ambroxol HCl was achieved by using matrix formulation of drug with HPMC K4M and ethyl cellulose. The 3² full factorial design was adopted for optimization of polymer concentration to achieve identical drug release with theoretical dissolution profile. The amount of HPMC K4M and ethyl cellulose were selected as independent variable and the similarity factor with theoretical dissolution profile and percentage drug release at 10th hr was selected as dependent variables. The prepared dual release tablets were evaluated for physical parameters, drug content, in-vitro drug release study, etc. All the parameter found to be acceptable in range. As the concentration of HPMC K4M is increase, the drug release is decrease and the effect of ethyl cellulose was found to be less compare to HPMC K4M.

KEYWORDS

Dual release system, ambroxol HCl, roxithromycin, factorial design.
1. INTRODUCTION
Dual drug delivery systems are designed to release drug at two different rates or in two different periods of time. This type of system is used primarily when maximum relief needs to be achieved quickly, and it is followed by a sustained release phase to avoid repeated administration. This type of system is also used when one drug require immediate release and one drug for sustained release effect to get best therapeutic response [1]. The solid oral dual drug delivery is possible by compressed matrix core tablet, bi-layer tablet, matrix tablet/capsule containing SR granules & IR granules. The bi-layer tablet is important because of their simplicity, low cost and their suitability for manufacture on modern high speed equipment. The purpose of the present research was to produce quick and slow release biphasic (dual release) system of ambroxol HCl and roxithromycin for Upper respiratory tract infections. Upper respiratory tract infections (URTI) are the illnesses caused by an acute infection which involves the upper respiratory tract: nose, sinuses, pharynx or larynx. This commonly includes: tonsillitis, pharyngitis, laryngitis, sinusitis, otitis media, and the common cold [2].
Ambrroxol HCl is a systemically active mucolytic agent used for decades in the treatment of respiratory disorders associated with excessive mucus, chronic inflammatory pulmonary conditions, bronchitis, and/or pneumonia [3]. It has short biological half-life (4 h) and require frequent daily dosing (2 to 3 times) and therapeutic use in chronic respiratory diseases necessitates formulating sustained release dosage form [4]. Roxithromycin is macrolide antibiotics used to treat respiratory tract, urinary and soft tissue infections. Immediate release part of dual release tablet can be design by using super disintegrants. Sustained release part can be design by using matrix type of system containing suitable polymers. Sodium starch glycolate is easily available and cheap. HPMC is a semisynthetic derivative of cellulose, which is swellable and hydrophilic in nature. It is very suitable to use as a retardant material in sustained release matrix formulations, as it is non-toxic and easy to handle [5]. Ethylcellulose is partially ethoxylated. Ethylcellulose, an ethyl ether of cellulose, is a long-chain polymer of b-anhydroglucose units joined by acetal linkages. The main use of ethylcellulose in oral formulations is as a hydrophobic coating agent for tablets and granules. Modified-release tablet formulations may also be produced using ethylcellulose as a matrix former [6, 7].

2. MATERIALS AND METHODS
Ambroxol hydrochloride obtained as gift sample from Ami Life sciences Pvt. Ltd., Baroda. Roxithromycin obtained as gift sample from Blue Cross Laboratories Ltd., Nashik. Hydroxypropyl methyl cellulose K4M and ethyl cellulose were gifted by Colorcon, Goa. Microcrystalline cellulose (Avicel PH 101) and Sodium starch glycolate were procured form Signet Chemical Corporation, Mumbai. PVP K30 was procured from S.D. Fine chemicals, Mumbai. All other excipients used were of an analytical grade, and procured from commercial sources.

2.1. Calculation of theoretical release profile from dual release tablets

1984
The theoretical dissolution profile was calculated using available pharmacokinetic data from a design of one compartment model. This was calculating as described by Robison and Eriksen [8]. The zero-order drug release rate constant \(K_0 \) was calculated using equation \(K_0 = D_1 \times K_e \), where \(D_1 \) is the initial dose (i.e., conventional dose = 30 mg) and \(K_e \) is first-order rate constant for overall elimination \((K_e= 0.693/t_{1/2} =0.1723 \text{ hr}^{-1}) \) and was found to be 5.19 mg/h. The maintenance dose can be calculated by \(D_m = K_0 \times T \), where \(T \) is the time for sustained action. The maintenance dose was to be founded 57.09 mg. The loading dose can be calculated by \(D_l = D_l - K_0 \times T_p \), where \(T_p \) is time to reach peak plasma concentration (for ambroxol hydrochloride \(T_p \) is 2 hr). The loading dose was to be founded 19.62 mg. Hence, the matrix tablet should contain a total dose of 76.51 mg (\(\cong 75 \) mg) calculated by using the equation, \(D_t = D_l + D_m \). It should release \(30 - 10.38 = 19.62 \) mg (26.13\%) in the 1st hr like conventional dosage form and the remaining dose (75 – 19.60) in remaining 11 h, i.e. 55.39 mg (73.86\%) or 5.19 (6.9\%) mg per hour up to 12 hr.

2.2. Preparation of dual release tablet (trial batch)
Dual release tablets were prepared by direct compression method. The ingredients were accurately weighed and mixed by triturating in a glass mortar & pestle. The quantity of powder for the fast release layer was compressed lightly using a rotary compression machine (Hardik engineering, India) equipped with 12 mm round and flat punches. Over this compressed layer, the required quantity of the sustained release layer was placed and compressed to obtain hardness in the range of 5–6 kg per cm\(^2\) to form a bi-layer matrix tablet [9]. Formulation of preliminary trial batches of the immediate release layer and sustained release layer is shown in Table 1.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate release layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roxithromycin</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Sodium starch glycolate</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>PVP K30</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>MCC</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Talc</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mg. stearate</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sustained release layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambroxol hydrochloride</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>HPMC K4M</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethyl cellulose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>MCC</td>
<td>50</td>
<td>30</td>
<td>10</td>
<td>50</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Talc</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mg. stearate</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
2.3. Physical Characterization of dual release Tablets [10]
The dual release tablets were characterized for weight variation using an analytical balance (Sartorius Weighing India Pvt. Ltd, New Delhi), thickness using a vernier callipers, hardness using a Monsanto type hardness tester (Janki impex Pvt. Ltd, Ahmedabad) and friability using a Roche-type friabilator (Electrolab, India).

2.4. Drug content uniformity
Ten tablets were finely powdered and an amount equivalent to 75 mg of ambroxol hydrochloride was accurately weighed and transferred to a 100 mL volumetric flask; 70 mL of 0.1 N HCl was then added. The flask was shaken for 10 min. Finally, the volume was made up to the mark with 0.1 N HCl. The mixture was then filtered and measured by high-performance liquid chromatography (LC-2010 CHT), Shimadzu, Japan. The method to quantify ambroxol hydrochloride and roxithromycin was done by HPLC with Phenomenex C18 column. The mobile phase consisted of an Acetonitrile: Phosphate buffer pH 5 in the ratio of 65: 35. The liquid flow rate of HPLC was 1 ml/min. The wavelength of detection was 210 nm.

2.5. In vitro drug release studies
The in vitro dissolution studies were carried out using USP 6 dissolution apparatus type II (paddle method) at 100 rpm. Dissolution test was carried out for a total period of 12 h using 0.1 N HCl (pH 1.2) solution (750 ml) as dissolution medium at 37 ± 0.5° for first 2 h, and then addition of 0.2 M tribasic sodium phosphate to achieve pH 6.8 (1000 ml) for the rest of the period. Ten millilitres of the sample was withdrawn at regular intervals and replaced with the same volume pre warmed (37 ± 0.5°) fresh dissolution medium [11]. The samples withdrawn were filtered through 0.45 μ membrane filter, and drug content in each sample was analyzed by high-performance liquid chromatography (LC-2010 CHT), Shimadzu, Japan. The wavelength of detection was 210 nm.

2.6. Optimization of dual release tablets by experimental design [12]
The statistical optimization was carried out using Design Expert 7 software. The factorial design is an effective method of indicating the relative significance of a number of variables and their interactions. The number of experiments required for these studies is dependent on the number of independent variables selected. The response (Y) was measured for each trial.

\[
Y = b_0 + b_1 X_1 + b_2 X_2 + b_{11} X_1^2 + b_{12} X_1 X_2 + b_{22} X_2^2
\] --- (1)

Where, Y is the dependent variable
b_0 is the arithmetic mean response of the nine runs,
X_1 and X_2 is the independent variable
b_1 and b_2 is the co-efficient of X_1 and X_2 variable, b_{12} is the co-efficient of interaction, b_{11} and b_{22} is the co-efficient of quadratic terms.
A 3^2 full factorial design was adopted in the study. In this design, two factors were evaluated. Three levels study and experimental trials were carried out using total nine possible combinations. The design layout and coded value of independent factor is shown in table 2 and 3 respectively. The factors were selected based on preliminary trial batches. The dual release bi-layer tablets were formulated as above mentioned procedure. The amount of HPMC K4M and amount of ethyl cellulose were selected as independent variable. The similarity factor with theoretical dissolution profile and percentage drug release at 10th hr was selected as dependent variables.

Table 2: Formulation of various batches according to factorial design.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>HE1</th>
<th>HE2</th>
<th>HE3</th>
<th>HE4</th>
<th>HE5</th>
<th>HE6</th>
<th>HE7</th>
<th>HE8</th>
<th>HE9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate release layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roxithromycin</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Sodium starch glycolate</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>PVP K30</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>MCC</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Talc</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mg. stearate</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sustained release layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambroxol hydrochloride</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>HPMC K4M</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Ethyl cellulose</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>MCC</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Talc</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mg. stearate</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total Weight</td>
<td>670</td>
<td>670</td>
<td>670</td>
<td>670</td>
<td>670</td>
<td>670</td>
<td>670</td>
<td>670</td>
<td>670</td>
</tr>
</tbody>
</table>

Table 3: Coded values and actual values for the independent variables (factors)

<table>
<thead>
<tr>
<th>Factor level</th>
<th>Coded Values</th>
<th>HPMC K4M (X_1)</th>
<th>Ethyl cellulose (X_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>-1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Medium</td>
<td>0</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>High</td>
<td>+1</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

2.7. *Mechanism of drug release from prepared tablets* [13]

Drug release mechanisms and kinetics are two important characteristics of delivery system in the dissolution system. The mechanism of drug release from prepared dual release tablets was carried out by mathematical models. The data was taken from dissolution of optimised batch.
2.7.1. Zero order
In zero order release study, percentage drug release versus time graph is plotted.
\[f_t = K_0 t \]
Where, \(f_t \) is fraction of dose release at time \(t \). \(K_0 \) is zero order rate constant expressed in units of concentration/time.

2.7.2. First order
In first order release study, log percent drug remaining versus time graph is plotted.
\[\log Q_t = \log Q_0 - \frac{Kt}{2.303} \]
Where, \(Q_0 \) is the drug amounts remaining to be released at zero hour. \(K \) is the first-order constant. \(Q_t \) is the drug amounts remaining to be released at time \(t \).

2.7.3. Higuchi's model
In Higuchi's model, percentage of drug released versus square root of time graph is plotted.
\[f_t = K_H t^{1/2} \]
Where, \(f_t \) is fraction of dose release at time \(t \). \(K_H \) is the constant for higuchi's model.

2.7.4. Korsmeyer–Peppas model
\[\frac{M_t}{M_\infty} = K t^n \]
Where, \(M_t/M_\infty \) is fraction of drug released at time \(t \). \(K \) is the rate constant and \(n \) is the release exponent. The \(n \) value is used to characterize different release mechanisms. The value of \(n \) is given in table 4 for characterize of release mechanism.

<table>
<thead>
<tr>
<th>Release exponent (n)</th>
<th>Drug transport mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>Fickian diffusion</td>
</tr>
<tr>
<td>0.45 < n = 0.89</td>
<td>Non-Fickian transport</td>
</tr>
<tr>
<td>0.89</td>
<td>Case II transport</td>
</tr>
<tr>
<td>Higher than 0.89</td>
<td>Super Case II transport</td>
</tr>
</tbody>
</table>

2.8. Comparison of dissolution profile of optimized batch with marketed formulation
The dissolution study of marketed formulation Accounting CR containing 75 mg of ambroxol hydrochloride were carried out using same procedure as mention above. The comparison of dissolution profile of optimised batch with this marketed formulation was carried out. The similarity and dissimilarity factors were calculated by following equation.

Similarity factor, \(f_2 = 50 \times \log \left \{ \frac{1 + (1/n) \sum_{i=1}^{n} (R_i - T_i)^2} {0.5 \times 100} \right \} \)

Dissimilarity factor, \(f_1 = \left \{ \frac{\sum_{i=1}^{n} |R_i - T_i|} {\sum_{i=1}^{n} R_i} \right \} \times 100 \)

3. RESULT AND DISCUSSION
3.1. Physical Characterization of dual release Tablets
The evaluation parameters of trial batches are shown in Table 5. The weight variation of prepared tablets is between 644.6 and 663.2, which is acceptance in range as per standard limit. Hardness and Friability data show that good mechanical properties because the hardness of tablets is near to 5 kg/cm² and friability is less than 1%. The thickness of tablets is uniform and between 5.9 to 6.3 mm. Drug content shows the uniformity of drug in individual dosage forms. The roxithromycin is found to be in the range of 98.3 to 103.1%. The ambroxol hydrochloride is found to be in the range of 97.2 to 102.4. The drug content is found to be uniform and acceptable range.

Table 5: Evaluation of prepared tablets.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight variation</td>
<td>644.6±6.3</td>
<td>663.2±8.8</td>
<td>655.1±7.9</td>
<td>646.5±5.7</td>
<td>660.2±3.6</td>
<td>654.9±4.3</td>
</tr>
<tr>
<td>Assay of roxithromycin (%)</td>
<td>98.3</td>
<td>99.2</td>
<td>103.1</td>
<td>99.4</td>
<td>100.4</td>
<td>98.5</td>
</tr>
<tr>
<td>Assay of ambroxol (%)</td>
<td>97.2</td>
<td>99.6</td>
<td>100.3</td>
<td>100.8</td>
<td>102.4</td>
<td>99.7</td>
</tr>
<tr>
<td>Friability (%)</td>
<td>0.74</td>
<td>0.45</td>
<td>0.66</td>
<td>0.70</td>
<td>0.46</td>
<td>0.54</td>
</tr>
<tr>
<td>Hardness (kg/cm²)</td>
<td>5</td>
<td>5.5</td>
<td>5</td>
<td>4.5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>6.3</td>
<td>6.2</td>
<td>6.3</td>
<td>5.9</td>
<td>6.0</td>
<td>5.9</td>
</tr>
</tbody>
</table>

3.2 In-vitro drug release study

The drug release of roxithromycin and ambroxol hydrochloride from prepared dual release tablet are shown in Figure 1 and 2. The roxithromycin was almost (> 95%) released at 15 min. which shows the quick drug release. The ambroxol hydrochloride is released from prepared matrix of HPMC K4M or ethyl cellulose. The dissolution study was carried out up to 12 hr. As the concentration of HPMC K4M or ethyl cellulose increases than the release of ambroxol hydrochloride from tablets is decreased. In the H3 batch, HPMC K4M is used in 60 mg quantity so the drug release is very slow and only 48% drug was released at 12 hr. Release of drug in H1 batch containing 20 mg of HPMC K4M have good release up to 12 hr. Fast drug release found in E1 batch containing 20 mg of ethyl cellulose, almost drug was released at 8 hr. Slow drug release found in E3 batch containing 60 mg of ethyl cellulose. For optimisation study the amount of HPMC K4M was selected 10 to 30 mg and ethyl cellulose was selected 20 to 30 mg.
3.3. Experimental design

In order to achieve desire drug release the experimental design was adopted for optimization. A quadratic model was obtained after analysing data. Values of p are less than 0.05 indicate model terms are significant. The statistical model comprising incorporated interactive and polynomial terms was utilized to evaluate the response. Once the uncoded values of factor levels were applied and response quadratic model was performed using DESIGN EXPERT. Values of coefficients are mention in table 6.

Table 6: Summary of regression output of significant factors for the measured responses.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Co-efficient of regression parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b_0) (b_1) (b_2) (b_{12}) (b_{11}) (b_{22}) (r^2) (P)</td>
</tr>
</tbody>
</table>
A positive value indicates a synergistic effect that favours optimization, while a negative sign represents an antagonistic effect or inverse effect of the factor on the selected response.

The result of ANOVA is show in table 7. For drug release at 10 hr, the model f-value of 77.81 implies the model is significant. The p value is only a 0.0023, which shows that the model is significant. Values of p less than 0.05 indicate model terms are significant. For similarity factor, the model f-value of 18.29 implies the model is significant. The value of p is 0.0187, which is less than the 0.05 that indicate the model is significant.

Table 7: Result of two way ANOVA for dependent variables.

<table>
<thead>
<tr>
<th>Response model</th>
<th>% drug release at 10 hrs</th>
<th>similarity factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Squares</td>
<td>240.05</td>
<td>1366.85</td>
</tr>
<tr>
<td>Degree of Freedom</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mean Square</td>
<td>48.01</td>
<td>273.37</td>
</tr>
<tr>
<td>Model F Value</td>
<td>77.81</td>
<td>18.29</td>
</tr>
<tr>
<td>P value</td>
<td>0.0023</td>
<td>0.0187</td>
</tr>
</tbody>
</table>

The graphical representation was generated for influence of factors on dependent variables. The 3D plot and contour plot for % drug release at 10 hr and similarity factor shows in figure 3. As the concentration of HPMC K4M is increase, the % drug release at 10 hr is decrease and also p value indicating significant effect. The effect of ethyl cellulose is less compare to HPMC K4M. Aim of this study is to achieve drug release as per theoretical dissolution profile and value of % drug release at 10 hr equal to 88.1 with highest value of similarity profile. The effect of the HPMC K4M and ethyl cellulose on similarity factor is significant. As the concentration of polymer increase, the similarity factor also increase up to certain level than it is decrease gradually.
Fig. 3: Response surface plot for influence of concentration of HPMC K4M and ethyl cellulose (a) 3D plot for % drug release at 10 hr, (b) 3D plot for similarity factor, (c) contour plot for % drug release at 10 hr and (d) contour plot for similarity factor.

One optimised formulation was obtained at two different target values for % drug release at 10 hr and similarity factor (table 8). The predicted and observed responses for the optimized tablet formulations showed no significant difference.

Table 8: Optimised values of HPMC K4M and ethyl cellulose with their predicted and observed response values.

<table>
<thead>
<tr>
<th>Response</th>
<th>HPMC K4M (mg)</th>
<th>Ethyl cellulose (mg)</th>
<th>Predicted value</th>
<th>Observed value</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity factor</td>
<td>19.0</td>
<td>29.8</td>
<td>82.00</td>
<td>85.70</td>
<td>4.51</td>
</tr>
<tr>
<td>% Drug Release at 10 hrs</td>
<td>88.1</td>
<td>87.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4. Kinetic modeling of drug release
The coefficient (R^2) was calculated for optimized batch using MS-excel and graphs were plotted. The value of rate constant and coefficient are show in Table 9. Based upon the regression coefficient, zero order drug release of ambroxol observed.
The drug release of ambroxol also follows the higuchi model (R^2 is 0.986). The drug release exponent was found to be 0.55 in korsmeyer peppas plot which indicated that the drug transport system is non–fickian type due to HPMC and ethyl cellulose.

Table 9: Kinetic modeling for optimised batch.

<table>
<thead>
<tr>
<th></th>
<th>Zero order</th>
<th>First order</th>
<th>Higuchi plot</th>
<th>Korsmeyer peppas plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>K_0</td>
<td>R^2</td>
<td>K_1</td>
<td>R^2</td>
</tr>
<tr>
<td>0.956</td>
<td>7.344</td>
<td>0.897</td>
<td>0.109</td>
<td>0.986</td>
</tr>
</tbody>
</table>

3.5. **Comparison of dissolution profile**

The comparison of dissolution profile of ambroxol HCl is show in figure 4. The identical dissolution profile found with the marketed formulation. There is no more change of dissolution profile. The similarity and dissimilarity factor found to be 81.27 and 3.41 respectively.

Figure 4: Comparison of dissolution profile of ambroxol HCl to optimised batch with marketed formulation

4. **CONCLUSION**

The dual release formulation of roxythromycin and ambroxol HCl can successfully formulate by using bi-layer tablet approach. Fast release of roxythromycin was incorporated with disintegrants. The matrix layer of ambroxol HCl with HPMC K4M and ethyl cellulose formulated to achieve the slow release of drug. The factorial design was adopted to obtain the drug release of ambroxol HCl identical to theoretical dissolution profile. The prepared dual release tablets of ambroxol HCl and roxithromycin shows acceptability after evaluated for various parameters.

5. **REFERENCES**

