Validated HPTLC Method for the Determination of Abacavir as Bulk Drug and In Pharmaceutical Dosage Form.

*1Pradeep Kumar, 1S.C.Dwivedi, 2Ashok Kushnoor
1School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India. 2Shri Gopichand College of Pharmacy, Baghpat, Uttar Pradesh, India.

Abstract
A simple, accurate, precise, and rapid high performance thin layer chromatographic method has been developed and validated for the estimation of Abacavir in tablet dosage forms. The method employed TLC aluminium plates precoated with silica gel 60 F 254 as the stationary phase. The mobile phase used was a mixture of (Chloroform: Methanol 9: 1 v/v). The detection of spot was carried out at 284nm. The calibration curve was found to be linear between 400 to 2400 ng mL\(^{-1}\) with regression coefficient of 0.9992. The proposed method can be successfully used to determine the drug content of marketed formulation. The accuracy of the proposed method was determined by recovery studies and found to be 99.49 to 99.79 %. The proposed method is applicable to routine analysis of Abacavir in bulk and pharmaceutical formulations. The proposed method was validated according to various ICH parameters like linearity, accuracy, precision, specificity, limits of detection and limits of quantification.

Key Words
Abacavir, Validation, ICH guidelines, HPTLC

Introduction
Abacavir is chemically [(1R)-4-[2-amino-6-(cyclopropylamino) purin-9-yl]-1-cyclopent-2-enyl] methanol (Fig. 1). It is a white crystalline powder used as antiretroviral agents, for the treatment of HIV infection. It has an empirical formula of \(\text{C}_{14}\text{H}_{18}\text{N}_{6}\text{O}\) and molecular weight of 286.3323. Abacavir belongs to a class of antiretroviral drugs known as nucleoside reverse transcriptase inhibitor (NRTI) with activity against Human Immunodeficiency Virus Type 1 (HIV-1)\(^{1}\). Literature survey reveals that very few analytical methods has been established for the determination of abacavir viz. abacavir, lamivudine and zidovudine in Pharmaceutical Tablets, Human Serum and in Drug Dissolution Studies by HPLC\(^2\). Hypersensitivity reaction to abacavir is strongly associated with the presence of the HLA-B 5701 allele\(^3\). Simple and Reliable HPLC Method of Abacavir Determination in Pharmaceuticals, Human Serum and Drug Dissolution Studies from Tablets\(^4\), Spectrophotometric determination of abacavir sulphate\(^5\), HPTLC method for simultaneous determination of Lamivudine and Abacavir Sulphate in tablet dosage form\(^6\) were reported.

The objective of this work was to develop a new, simple, economic, rapid, precise, and accurate HPTLC method for quantitative analysis of abacavir as bulk drug and in pharmaceutical formulations, and to validate the method in accordance with ICH guidelines\(^7\).

Materials and Methods
Pure standard of Abacavir (Assigned purity 99.97%) was obtained as a gift sample from Ranbaxy labs Pvt. Ltd, Jammu (H.P). The gift sample was used as standard without further purification. Silica gel 60 F 254 TLC plates (20x10cm) were used as stationary phase. All chemicals and reagents used were of analytical grade and obtained from Qualigens. Commercial pharmaceutical preparation (Ziagen)
which was claimed to contain 300mg of Abacavir is used in analysis. The chemical structure and purity of the sample obtained was confirmed by TLC, IR, Melting point studies.

Equipments

The instrument used in the present study was Camag Linnomat V- automatic sample applicator, Hamilton syringe (100µl), Camag TLC scanner 3, Camag Twin through chamber of appropriate size, Analytical weighing balance (Shimadzu AX 200), Sonicator (model SONICA 2200MH) were used throughout the experiment. Camag Wincats software was used for acquisition, evaluation and storage of chromatographic data.

Preparation of Standard Solution

A stock solution of drug was prepared by dissolving 100 mg of Pure Abacavir in a 100 ml volumetric flasks containing sufficient amount of methanol to dissolve the drug, sonicated for about 15 min and then made up to volume with methanol (1 mg/ml). A standard solution was prepared by dilution of the stock solution with methanol to give in concentration of 100µg/ml. Further dilutions were made with methanol to give a solution in concentration range of 400-2400ng/ml.

Procedure for Sample Solution (From Formulation)

Twenty tablets were weighed accurately and powdered. An amount of the powder equivalent to 300 mg of Abacavir (content of one tablet) was dissolved in sufficient amount of methanol to dissolve the drug, sonicated for about 15 min and then filtered into a 100 ml volumetric flask through 0.45 µm membrane filter. The residue was washed 3 times with 10 ml of methanol, and then the volume was completed to 100 ml with the same solvent. Make further dilutions with methanol to obtain a stock solution of 10µg/ml. An aliquot of this solution (1 ml) was transferred to a 10 ml volumetric flask and made up sufficient volume with the methanol to give an expected concentration of 1 µg/ml.

Prewashing of TLC plates

HPTLC was performed on 20 cm × 10 cm precoated silica gel 60 F 254 TLC plates. The adsorbent has a very large surface area; it may absorb air and other impurities from atmosphere, particularly volatile impurities, after the pack has been opened. The non-volatile impurities adsorbed by layer can lead to irregular baseline in scanning densitometry. To avoid possible interference from such impurities in quantitative analysis, plates were prewashed with methanol dried, and activated for 30 min. at 110 C, with the plates being placed between two sheets of glass to prevent deformation of the aluminum during heating.

Results and Discussion

A methanolic solution of abacavir (1 mg/ml) was prepared. This solution was further diluted with methanol to yield a solution containing 1µg/ml. Different concentrations of abacavir in a concentration range of 400-2400ng/ml were applied on plates as 8 mm bands, 8 mm apart and 1 cm from edge of the plate, by means of Camag Linomat V automatic sample applicator fitted with 100 µl Hamilton syringe. A methanol blank was applied to parallel track. The mobile phase, Chloroform: Methanol 9: 1 v/v was poured into the twin trough glass chamber and the glass chamber left to equilibrate for 10 min at 25 ± 2°C. After that the plate was placed in Camag twin trough glass chamber. After development, the plate was removed from the chamber, dried in current of hot air, and scanned at 284 nm, using a deuterium lamp, by means of Camag TLC scanner III densitometer. Densitograms were obtained by HPTLC of abacavir at various concentrations. This method was followed for all quantitative analysis. The Wincats software was used for data acquisition and processing of the plate. Peak height and peak area were integrated for the entire track. The calibration curve was established by plotting the obtained peak area on ordinate against corresponding concentration on abscissa.

Validation of Analytical Method

Validation of an analytical method is process to establish by laboratory studies that the performance characteristics of the method meet the requirements for the intended analytical application. Performance characteristics are expressed in terms of analytical parameters. Typical analytical parameters used in validation area:

1. Linearity
2. Accuracy
3. Precision
4. Specificity
5. Limit of detection
6. Limit of quantification
Validated HPTLC Method for the Determination of Abacavir as Bulk Drug

Pradeep Kumar et al

Linearity
Acceptance criteria: Coefficient of correlation (r2) should be greater than 0.998.

Procedure
A stock solution of drug was prepared by dissolving 100 mg of Pure Abacavir in a 100 ml volumetric flasks containing sufficient amount of methanol to dissolve the drug, sonicated for about 15 min and then made up to volume with methanol (1 mg/ml). A standard solution was prepared by dilution of the stock solution with methanol to give in concentration of 100µg/ml. Further dilutions were made with methanol to give a solution in concentration range of 400-2400ng/ml. (Graph No. 1 and chromatogram No. 1).

Correlation coefficient (r^2) for abacavir was found to be 0.9992, indicating the linearity and the method is linear between the concentrations of 400-2400ng/ml with Rf value 0.81±0.02.

Accuracy
Accuracy is the closeness of the measured value to the true value of the sample. To evaluate the accuracy of the method, known amount of pure drug was added to the previously analyzed solution containing pharmaceutical formulation and the mixture was analyzed by the proposed method and the recoveries were calculated. Accuracy was found out by recovery study from prepared solution (three replicates) with standard solution, of the label claim. Aliquots of 0.2 ml, 0.6ml and 1.0 ml of sample drug (Abacavir) solution of 10µg/ml were pipetted into each of three volumetric flasks. To this 0.6 ml of standard drug (Abacavir) solution of 10µg/ml was added to each volumetric flask respectively. The volume was made up to 10 ml with methanol. The range of recovery studies were found between 99.49 to 99.79 %. The values of recovery justify the accuracy of the method. The % recovery values were obtained within the standard limit which confirms that the method is accurate and free from any positive or negative interference of the excipients. (Table No. 1)

The percentage recovery by the proposed method was ranging from 99.49 to 99.79 % indicating no interference of the tablet excipients with drug under analysis.

Precision
Precision is measure of repeatability or reproducibility and it was determined by injecting 5 times the expected operating range concentration. The chromatograms were recorded to determine mean standard deviation and relative standard deviation. (Table No. 2)

Acceptance criteria: RSD<5.0% for peak area.

From the above analytical data it is observed that RSD for the assay is 0.714 which indicates that the method is precise and reproducible.

Specificity
Specificity is the ability to assess the analyte in the presence of components that may be expected to be present in the sample matrix (USP 2004). For demonstrating the specificity of the method for drug formulation the drugs was spiked and observe the chromatogram (chromatogram No.2).

The excipients used in different formulation products did not interfere with the drug peak and thus, the method is specific for abacavir.

Limits of Detection and Quantification
The detection limit (LOD) is the lowest amount of an analyte in a sample that can be detected, but not necessarily quantitated, under the stated experimental conditions. It may be expressed as a concentration that gives a signal-to-noise ratio of 2:1 or 3:1. The lower limit of detection for abacavir is 17.068ng/ml in reference material and formulation. Limit of Quantification (LOQ) is the lowest amount analyte in a sample that can be determined with acceptable precision and accuracy under the stated experimental conditions. A signal-to-noise ratio of 10:1 can be taken as LOQ of the method. The LOQ values were found to be 51.723ng/ml for raw material and formulations.

Conclusion
The proposed HPTLC method is found to be accurate, precise, linear, stable, specific, and simple, for quantitative estimation of Abacavir in raw material and pharmaceutical formulations. Hence the present HPTLC method is suitable for routine assay of abacavir in raw materials and in pharmaceutical formulations in the quality control laboratories.

Acknowledgement
The authors thank Ranbaxy labs Pvt. Ltd, Jammu (H.P), India, for providing a sample of Abacavir as a gift.

References
1. http://www.drugbank.ca/drugs/DB01048
Validated HPTLC Method for the Determination of Abacavir as Bulk Drug..........................Pradeep Kumar et al

Graph No. 1

Chromatogram No. 1

Chromatogram No. 2: HPTLC Chromatogram showing Specificity of Abacavir.

Table No. 1: Result of Recovery Studies of Drug.

<table>
<thead>
<tr>
<th>Conc. ng/ml (A)</th>
<th>Std addition in ng/ml (B)</th>
<th>Total drug conc. ng/ml (A+B)</th>
<th>Peak Area*</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>600</td>
<td>800</td>
<td>11872.5</td>
<td>99.49</td>
</tr>
<tr>
<td>600</td>
<td>600</td>
<td>1200</td>
<td>17574.8</td>
<td>99.64</td>
</tr>
<tr>
<td>1000</td>
<td>600</td>
<td>1600</td>
<td>23707.3</td>
<td>99.79</td>
</tr>
</tbody>
</table>

% RSD

<table>
<thead>
<tr>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.150542</td>
</tr>
</tbody>
</table>

*Average of three readings

Table No. 2: Precision of Abacavir.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Area Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6349.5</td>
</tr>
<tr>
<td>2</td>
<td>6450.8</td>
</tr>
<tr>
<td>3</td>
<td>6372.7</td>
</tr>
<tr>
<td>4</td>
<td>6390.2</td>
</tr>
<tr>
<td>5</td>
<td>649.2</td>
</tr>
<tr>
<td>Average</td>
<td>6402.48</td>
</tr>
<tr>
<td>S.D.</td>
<td>45.72228</td>
</tr>
<tr>
<td>R.S.D.</td>
<td>0.714134</td>
</tr>
</tbody>
</table>